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PART 8: CATEGORIAL GRAMMARS 

 

Categorial grammar.   Adjukiewicz 1935, Bar-Hillel 1953 

 

Bidirectional Categorial grammar:   

 

CATB is the smallest set such that: 

 1. CAT0 is a finite subset of CAT 

 2. If X, Y  CAT then X/Y  CAT and X\Y  CAT 

 

Interpretation:  if α  X and β  X\Y then αβ  Y left-concatenation 

 if α  X/Y and β  Y then αβ  X right-concatenation 

 

Uni-directional Categorial grammar: 

 

CAT is the smallest set such that: 

 1. CAT0 is a finite subset of CAT 

 2. If X, Y  CAT then X/Y  CAT 

 

Interpretation:  if α  X/Y and β  Y then αβ  X right-concatenation 

 

 

Examples:  Bi-directional: 

 

Assume basic categories:  DP, N, S 

 

 D = DP/N   

  IV = DP\S 

 TV = IV/DP 

 ADJ = N/N 

 P = (IV/IV)/DP P = (N/N)/DP 

 

Examples:   IV = DP\S 

         IV forms an S with an NP on its left 

 

TV = IV/DP 

  TV forms an IV with an NP on its right 

 

Hence:  If Ronya  DP, and  purrs  DP\S then Ronya purrs  S. 

  Ronya  +  purrs   Ronya purrs  

  DP      DP\S  S 

 

  strokes      + Ronya   strokes Ronya 

  (DP\S)/DP DP  (DP\S) 

                                                 Pat   +  strokes Ronya       Pat strokes Ronya 

     DP (DP\S)   S 
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Uni-directional: 

 

Assume basic categories IV, N, S 

 

 DP = S/IV   

D = DP/ N   

 TV = IV/DP 

 ADJ = N/N 

 P = (IV/IV)/DP P = (N/N)/DP 

 

Hence:  If Ronya  S/IV, and  purrs  IV then Ronya purrs  S. 

  Ronya  +  purrs   Ronya purrs  

  S/IV      IV   S 

 

  strokes      + Ronya   strokes Ronya 

  IV/(S/IV) S/IV  IV 

                                                       Pat   +  strokes Ronya       Pat strokes 

Ronya 

          S/IV     IV        S  
 

Fact: (Bar-Hillel et. al. 1960)  

Bi-directional categorial grammars are  weakly equivalent to uni-directional 

categorial grammars. 

Uni-directional categorial grammars are weakly equivalent to context free 

grammars. 

 

Flexible interpretation and type shifting 

Natural semantic interpretation for categorial grammar in type theory: correspondence 

between categories and types  (Richard Montague, David Lewis). 

e.g. IV = NP\S  <e,t> 

 

Partee and Rooth 1983, Partee 1987, etc.: type shifting operations. 

Systematic ambiguity: expressions can shift their interpretation systematically to 

different types via type shifting operations. 

Klein and Sag:  type driven interpretation:  use type shifting operations to resolve type 

mismatches.  

 

Example:  Partee triangle for noun phrase interpretation:  

 

type of generalized quantifiers  - λP.P(Ronya)  

<<e,t>,t> 

      EC 

 

   LIFT    <e,t>  type of properties - λx.x=Ronya  

 

          IDENT  

e 

type of individuals - Ronya 

Argument Positions  Predicate Position 

e, <<e,t>,t>   <e,t> 
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IDENT[α] = λx.x=α LIFT[α] = λP.P(α) EC[α] = λP.x[α(x)  P(x)] 

 

Ronya  PURR   (PURR(Ronya))   

type e  type <e,t> type t 

 

Noun phrases as predicates: 

IDENT[Ronya] = λx.x=Ronya the property of being Ronya 

 

the                       winner         (the(winner))  

type <<e,t>,e>     type <e,t>  type e 

 

be  λP.P identity function of type <<e,t>,<e,t>>  (copula be, cf. Hebrew)  

 

idea:  Don't encode a special meaning into be: in the languages that have a copula, be 

is there for syntactic reasons, for instance, because the language does not allow noun 

phrases to occur as VPs without predicate marking. 

 

is Ronya    apply  λP.P to Ronya   

  type mismatch: resolve Ronya as IDENT(Ronya)  = λx.x=Ronya  

  apply λP.P to λx.x=Ronya 

is Ronya  λx.x=Ronya 

 

The winner   is Ronya: 

type e   type <e,t> 

(the(winner))  λx.x=Ronya 

(λx.x=Ronya (the(winner)) 

 

λ-conversion:  (the(winner)) = Ronya 

        e                     e 

  

Noun phrases as generalized quantifiers (Advanced semantics) 

every  λQλP.x[Q(x)  P(x)]  the relation that holds between Q and P if Q is a 

subset of P 

 

every lion  (λQλP.x[Q(x)  P(x)](LION))  
λ-conversion:   

every lion  λP.x[LION(x)  P(x)] the set of properties that every lion has. 

 

Ronya and every lion:  AND(Ronya,   λP.x[LION(x)  P(x)]  ) 

                                               type e     type <<e,t>,t> 

 

AND: type <a,<a,a>>, requires two arguments of the same type.   

Type mismatch.  Ronya resolves as LIFT(Ronya) = λP.P(Ronya) 

 

Ronya and every lion:  AND(λP.P(Ronya),   λP.x[LION(x)  P(x)]) 

    λP.P(Ronya)  λP.x[LION(x)  P(x)] 

   λP. P(Ronya)  x[LION(x)  P(x)] 

   The set of properties that Ronya has and every lion has as well 
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Flexible categorial grammar:  

-categories are a syntactic encoding of semantic categories. 

-syntactic derivation represent derivations of grammatical sentences with a 

predictable meaning. 

-flexibility in what fits together semantically 

 flexibility in what fits together syntactically. 

 

Thus in flexible categorial grammars you extend categorial grammars with two kinds 

of rules: 

-Category changing rules:  rules that tell you that expressions of category A are also 

expressions of category B.   

-Categorial combination operations like function composition, besides the standard or  

left and right concatenation.  This can involve operations that are more powerful 

syntactically, or semantically. 

 

Thus, Emmon Bach in the early 1980ies proposed to extend categorial grammar with 

wrapping rules, rules that wrap expressions into second position: 

 

Left wrap:   LWRAP[β, a1a2…an1an] = a1βa2…an1an 

Right wrap:   RWRAP[β, a1a2…an1an] = a1a2…an1βan 

 

This lead to head grammars (Pollard), proven to be weakly equivalent to tree 

adjoining grammars by Vijay Shankar. 

 

Extending the grammar with composition and lift operations was explored extensively 

in combinatory categorial grammar, e.g. Steedman 1987, 1996, 2000, Szabolcsi 1989, 

Jacobson 1999 (the Steedman variety has also proved to be weakly equivalent to tree 

adjoining languages).    

 

Let us associate categories with lexical items: 

 

Pat, S/IV  strokes, IV/(S/IV)    Ronya, S/IV 

 

and think of these as lexical axioms.  

We now think of application and composition as proof rules: 

 

Application.  If α, A/B and β, B occur in your proof, you can conclude αβ,A. 

                 If α, A\B and β, B occur in your proof, you can conclude αβ, B. 

       (= Modus Ponens) 

 

With this, we can derive: 

 

1.  strokes, IV/(S/IV)   [axiom]      

2. Ronya, S/IV    [axiom] 

3. strokes Ronya, IV   [application] 

4. Pat, S/IV    [axiom] 

5. Pat strokes Ronya, S  [application] 
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The rule for composition is:  

 

Composition:   If α, A/B and β, B/C occur in your proof, you can conclude αβ, A/C 

 

(See the papers in question for much discussion of the pro's and con's of different 

forward and backward versions of this.) 

 

Now, there is an interesting dual perspective here on categories of the form A/B 

(see Landman 2006, and Advanced Semantics).  

The standard tree perspective is that tree T/B is a tree that combines with tree B to 

form tree T, for instance, VP adverbials: 

 

             VP    S/NP 

 

   VP/VP   VP  DP  VP/DP 

             langzaam  lopen 

  slowly   walk  Kim V  DP/DP 

 

               hugs      e  

 

The other perspective, motivated by the semantic interpretation is that structure T/B is 

a T-tree with a B-tree missing in it, i.e. something that would be a tree T, if a tree of 

category B were sitting in it. And we interpret this as a tree T with a B-gap in it.  

 

The smallest tree of this form would be [B/B e], a trace. 

With this we can illustrate the basic treatment of gaps in combinatory categorial 

grammar: 

 

Axioms: 

cat, N  the, (S/IV)/N  Pat, S/IV strokes, IV/(S/IV) purrs, IV 

 

that, (N\N)/(S/(S/IV)) (relativizer)   e, (S/IV)/(S/IV)  (gap) 

 

We can derive: 

 

1.   strokes, IV/(S/IV)   [axiom] 

2.   e, (S/IV)/(S/IV)   [axiom]  a DP gap 

3.   strokes e, (IV/(S/IV)  [composition] We derive an IV with a DP gap 

4.   Pat, S/IV    [axiom] 

5.   Pat strokes e, S/(S/IV)  [composition] We derive an S with a DP gap 

6.   that, (N\N)/(S/(S/IV))  [axiom] relativizer that 

7    that Pat strokes e, (N\N)  [application]  We introduce the top of the chain 

8.   cat, N    [axiom] 

9.   cat that Pat strokes e, N  [application] 

10. the, (S/IV)/N   [axiom] 

11. the cat that Pat strokes e, S/IV [application] 

12. purrs, IV    [axiom] 

13. the cat that Pat strokes e purrs, S [application] 
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S [appl] 

 

S/IV [appl]   IV 

      purrs 

(S/IV)/N   N  [appl]           

   the 

  N    N\N [appl] 

  cat 

(N\N)/(S/(S/IV))  S/(S/IV) [comp] 

           that   

      (S/IV)  (IV/(S/IV) [comp] 

        Pat 

IV/(S/IV)  (S/IV)/(S/IV) 

       strokes            e  

 

 

Jacobson  1999 shows that this syntax has a natural semantics. 

The gap [DP/DP e] is interpreted as the identity function at type <e,e>: λx.x. 

Composition will derive a predicate for category S/DP: λx.STROKE(Pat,x), which is 

turned into a predicate modifier at the next higher level: λPλx.P(x)  (x).   

See Advanced Semantics for details. 

 

Type Shifting Theory and Combinatory Categorial Grammar work rather  bottom up 

with respect to the principles of the proof theory assumed:  we do not know what the 

actual theory is, we discover in the course of studying syntactic and semantics 

phenomena what the operations are that we should assume.   

Ideally the operations are natural operations (in the sense of Dowty 1982's 

grammatical operations): they have a natural mathematical interpretation, they 

typically apply in more than one grammatical domain, they are cross-linguistically 

robust, often lexicalized in one language but not in others.   

 

Example:  EC[α] = λy.x[α(x,y)] 

                  love ⇒ be loved   passivization = taking the second projection of a relation 

       Landman 2004 uses EC as a type shifting rule.  
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Proof theoretic grammar: (Lambek 1958, van Benthem 1987, see the exposition in 

Moortgat 1997).  

  

Proof theoretic grammar is more ambitious.  It provides not a list of typeshifting 

principles, or combinators, but a general logic of categories from which such 

principles can be proved.  

 

Idea:  a grammar is a set of formal proof rules G for proving that an expression is of 

category S. 

Generation:  α is generated by G if there is a proof in G that α is of category S. 

 

The proof system derives a conclusion from an (ordered) set of premises: 

 

α1,…,αn ⇒ β:  from premises α1,…,αn we derive β 

 

The earliest proof system working this way was formulated in 1958 by Joachim 

Lambek.  Lambek noticed the analogy between the categorial grammar principle  

A, A/B ⇒ B and the principle of Modus Ponens: A, (A  B) ⇒ B.  With this, he 

reformulated the categorial grammar of left and right concatenation as logical theory 

for deriving categories, and with that deriving inferences of the form: 

 if α is of category A, α is also of category B. 

Which allows you to shift α, A to α, B which may be a category that you can combine 

easily with other categories.   The proof theory is a Genzenstyle sequent calculus, 

which is close to natural deduction systems, and gives for each connective a rule for 

introducing it (I) and for exploiting it (E).   

  

Lambek Calculus  (Presentation and extensive discussion in Moortgat 1997) 

(α1,…,αn means: the premises come in that order but the order is assumed to be 

associative). 

 

CUT if X ⇒ A and Y,A,Z ⇒ B then Y,X,Z ⇒ B  (cut) 

ID  A ⇒ A 

E/ if X ⇒ A/B and Y ⇒ B then X,Y ⇒ A    

I/ If X  Ø and X,B ⇒ A then X ⇒ A/B 

E\ if X ⇒ B and Y ⇒ B\A then X,Y ⇒ A 

I\ if X  Ø and B,X ⇒ A then X ⇒ B\A 

E if X ⇒ AB and Y,A,B,Z ⇒ C then Y,X,Z ⇒ C 

I if X ⇒ A and Y ⇒ B then X,Y ⇒ AB 

 

Illustration of the principle I/. 

This introduces a conditional proof. 

Suppose you make a conditional assumption: e, DP 

And with that assumption you derive α,S 

Then you can derive α, S/DP without making the assumption e, DP. 

But note, this is only warranted for derivations where you actually are making that 

assumption.  This shows the proof theoretic approach to gaps: 
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1.   strokes, IV/(S/IV)    [axiom] 

2.   (S/IV)    [assumption] 

3.   strokes, IV    [E/]  

4.   Pat, S/IV    [axiom] 

5.   Pat strokes, S   [E\] 

6.   Pat strokes , (S/(S/IV))  [I/, withdrawl of the assumption] 

7.   that, (N\N)/(S/(S/IV))  [axiom] 

8.   that Pat strokes, (N\N)  [E/] 

9.   cat, N    [axiom] 

10. cat that Pat strokes, N  [E\] 

10. the, (S/IV)/N   [axiom] 

11. the cat that Pat strokes, S/IV [E/] 

12. purrs, IV    [axiom] 

13. the cat that Pat strokes purrs, S   [E/] 

 

All sorts of well known typeshifting rules are derivable in the Lambek calculus. 

 

Lifting: A ⇒ B/(A\B)     

   A ⇒ (B/A)\B 

We set:  DP = S/IV, a DP takes an IV to its right to form a sentence. 

But, of course, IV takes a DP to its left to form a sentence, which means that: 

 

 IV = DP\S = (S/IV)\S, which is what the second lifting principle says. 

 

This has important semantic consequences, because the basic semantics associated 

with category IV may be of a lower type than that associated with (S/IV)\S. 

See Advanced semantics for applications. 

 

Composition: (A/B)(B/C) ⇒ A/C  

   (C\B)(B\A) ⇒ C\A 

Geach   A/B ⇒ (A/C)/(B/C) 

   B\A ⇒ (C\B)\(C\A) 

 

The Geach rule expresses compositon as (higher order) application: 

Instead of composing α, A/B with β, B/C to get αβ, A/C, 

we apply α, (A/C)/(B/C) to β, B/C to get αβ, A/C  

 

See Moortgat 1997 for more principles. 

 

Some facts: 

 

FACT 1 (Lambek)  The Lambek Calculus is decidable. 

 

FACT 2 (Lambek) Cut-elimination: For every proof in the Lambek Calculus that uses 

               CUT, there is a proof of the same thing that doesn't use cut. 

 

This means that the proof theory has highly desirable logical properties like 

supporting interpolation normalization theorems. 
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Let us call a Lambek Grammar a set of lexical axioms, and for Lambek Grammar G, 

L(G) the set of expressions of category S derived from G by the Lambek Calculus 

(i.e. the intersection of the the closure of G under derivation in the Lambek Calculus 

with the set of expression of category S).  

 

FACT 3 (Lambek)  For every context free grammar G there is a Lambek Grammar 

               that that is weakly equivalent to G. 

 

Lambek, in fact, conjectured that the inverse is also true:  the Lambek Calculus was 

meant to formulate the categorial grammars of left and right concatenation as a 

logical theory.  We know that these grammars are weakly equivalent to context free 

grammars.  This means that, if succesful, the Lambek Calculus would only allow 

Lambek grammars  weakly equivalent to context free grammars. 

 

FACT 4: (Mati Pentus, 1993)  Every Lambek Grammar is weakly equivalent to a 

                   context free grammar. 

 

So, the conjecture turned out to be true, but remarkably hard to prove! 

 

FACT 5: Completeness proofs exist for the Lambek Calcules relative to various 

                interpretations.      

 

This is, of course, good news for semanticists who went into semantics in the first 

place because they couldn't deal with those endless syntactic proofs. 

 

Thus, assuming that we interpret basic categories as sets of expressions we can define:  

 

⟦AB⟧ = {αβ: α  ⟦A⟧ and β  ⟦B⟧}   

⟦A/B⟧ = {α: β  ⟦B⟧ such that αβ  ⟦A⟧}   

⟦B\A⟧ = {α: β  ⟦B⟧ such that βα  ⟦A⟧}   

 

With this semantics we can easily prove the validity of, say, the first composition 

principle: 

 (A/B)(B/C) ⇒ A/C  

 

Proof: 

Assume    ⟦(A/B)(B/C)⟧. 
Then   = αβ for some α  ⟦A/B⟧ and some β  ⟦B/C⟧   

Hence α  ⟦A/B⟧ and αδ ⟦A⟧ for some δ  ⟦B⟧  

And    β  ⟦B/C⟧ and  βγ ⟦B⟧ for some γ  ⟦C⟧ 
 

Look at γ. 

γ = αβγ, α  ⟦A/B⟧ and βγ ⟦B⟧, hence γ  ⟦A⟧ 
Since γ  ⟦C⟧, it follows that   ⟦(A/C)⟧. 
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Caveat: The sequent calculus presentation may obscure some features of the proof 

system that distinguish the system from more familiar proofsystems like that for 

classical logic.  The logic is in some ways more like intuitionistic logic that like 

classical logic (no ex false inferences), in other ways it is more like linear logic (the 

order of the premises matters), in yet other ways it is quite unique:  assumptions 

cannot be repeated, they can be used only once).  In fact, when all the restrictions and 

conditions are make completely explicit, as is done in the natural deduction system 

given in (Ernst) Zimmermann 2006, the resulting system is surprisingly complex.   

 

Some discussion: 

 

The challenge of proof theoretic grammars is, of course, deriving all and only the 

wanted type shifting effects from a general proof theory.  That is, it is one thing to 

propose a specific rule to create a specific effect where this effect is observed, and to 

argue that it is attractive to delegate this to a type shifting principle which is, we 

assume, a mathematically natural operation, and another thing to derive that principle 

from a much more general proof theory.   

The worrysome question always is:  what else do you get on the side? 

 The issue is highly non-trivial.  

The Lambek calculus, for example, suffers from undergeneration and overgeneration, 

both syntactically and semantically.   

 Syntactically, we now know that indeed the Lambek Calculus is equivalent to 

contextfree grammars, and that means that it inherits the weakness of the latter: 

problems with discontinuous constituents, cross-serial dependencies, etc.  But, of 

course, you cannot simply add some non-context free rules to deal with that:  you 

must find a stronger logic, which does more, but not too much.  

 Concretely, with respect to the syntactic analysis of gaps, the combinatory 

categorial grammar frameworks and their extensions have developed comprehensive 

analyses of operator-gap constructions.  The Lambek calculus actually only allows the 

gaps in certain peripherical positions.  This means that the calculus can deal with 

some gap constructions, but not in a general enough way.   Thus here too, the calculus 

undergeneralizes. 

 The calculus overgeneralizes too, because it cannot properly constrain the 

power that it has.  That is, once you need an operation in one type of construction, it is 

hard to block its application in another type of construction where it is unwanted. 

 An instructive example based on an example by Paul Dekker is the completely 

ungrammatical (1): 

 

(1) a. #  The lover of  and  John thinks that   honesty   is badly missed. 

      b. [[[the lover of] and [John thinks that]] honesty] is badly missed. 

  

Grammars based more on constituent structure than the Lambek calculus, will not 

generate sentence (1a), because they will not generate stucture (1b).  But, given 

natural basic assumptions, the Lambek calculus will generate (1a) along the lines of 

(1b). 

 

The reason is that the Lambek calculus gives a general account of non-constituent 

conjunction. 

Look at (2): 
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(2) a.     the lover of   and  fighter for    honesty  is badly missed 

      b. [[[the lover of] and [fighter for]] honesty] is badly missed 

 

Given (2b) we need a category assignment to the lover of, which arguably is going to 

be: 

(S/IV)/(S/IV)  (i.e. DP/DP).  This gives for (2a): 

 

(2) a.     the lover of   and  fighter for    honesty  is badly missed 

      b. [[[the lover of] and [fighter for]] honesty] is badly missed 

             (S/IV)/(S/IV)       (S/IV)/(S/IV) 

                        (S/IV)/(S/IV)        (S/IV) 

    (S/IV)   IV 

      S 

Next look at (3): 

 

(3) a. John thinks that honesty and Mary thinks that prudence     is badly missed. 

       [[John thinks that honesty] and [Mary thinks that prudence]] is badly missed. 

          (S/IV)                                     S/IV 

    S/IV     IV 

       S 

 

The central point is this:  the argument in (3) means that we cannot avoid analyzing 

John thinks that honesty as S/IV.  We chose to identify DP with S/IV as well, but 

even if we hadn't, we can't avoid in the Lambek calculus giving DPs category S/IV as 

well.   You see that in the semantics:  if walks  ⟦IV⟧ and John walks  ⟦S⟧, then 

John  {α: β  ⟦IV⟧: αβ  ⟦S⟧}.  This means that John and Mary thinks that 

prudence share a syntactic category and hence are conjoinable.   

 But if Mary thinks that prudence has category S/IV, and prudence has 

category S/IV (= DP), then Mary thinks that allows category (S/IV)/(S/IV) and is 

conjoinable with the lover of of category (S/IV)/(S/IV):  conjoin, combine the result 

with S/IV honesty, and the result with the IV is badly missed and you get (1a): 

 

(1) a. #  The lover of  and  John thinks that   honesty   is badly missed. 

      b. [[[the lover of] and [John thinks that]] honesty] is badly missed. 

             (S/IV)/(S/IV)         (S/IV)/(S/IV) 

                             (S/IV)/(S/IV)   (S/IV) 

     (S/IV)   IV 

       S 

We see that the Lambek Calcucus undergenerated and overgenerates with respect to 

the syntax.   

The same is true for the semantics as well.  The Lambek calculus 

undergenerates, because, for instance some wide scope readings that Herman 

Hendrik's type shifting theory (discussed in Advanced Semantics) gets via Argument 

lift (lift the subject argument position of the verb first to the type of generalized 

quantifiers and then the object argument position, and combine with both arguments 

gives inverse scope), are beyond the capacity of the Lambek calculus.   

This means that an appropriate analysis of inverse scope readings needs to be added to 

the Lambek calculus.   

On the other hand, the Lambek calculus overgenerates because it cannot 

prevent application of available principles, where the reading doesn't exist.   
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The Lambek calculus allows lifting the Boolean operations like and, not, or to 

higher Boolean types: 

Thus, we can lift the interpretation of IV be smart as follows: 

 

be smart  SMART of type <e,t>  lifts to: λT.T(SMART) of type <<<e,t>,t>,t> 

taking a DP meaning at the generalized quantifer type as argument.   

Now we cannot avoid lifting negation to this type, and this means that we derive for 

isn't smart:  (besides its normal meaning λx.SMART(x)): 

 

isn't smart   λT.T(DANCE) 

 

This allows us to deal with all that glitters isn't gold readings:   

 

 EVery cat isn't smART  = Not every cat is smart 

 

isn't smart  +  every cat     Every cat isn't smart 

λT.T(BE SMART)     λP.x[CAT(x)  P(x)]    x[CAT(x)  SMART(x)]  

 

However, the problem of the Lambek calculus is as before:  if you can do it with one 

noun phrase, you can do it with other noun phrases as well, and hence you derive: 

 

isn't smart  +  some cat     Some cat isn't smart 

λT.T(BE SMART)     λP.x[CAT(x)  P(x)]      x[CAT(x)  SMART(x)]  

               No cat is smart 

 

But some cat isn't smart doesn't have that interpretation. 

  

And this is the problem.  Since the theory derives what it allows from completely 

general principles, it can't distinguish different cases here, because it doesn't want to.  

But, of course, such distinctions are needed. 

 

So if you want to maintain the proof theoretic perspective (and this is from a 

computational point of view very attractive), you must make the logic both stronger 

(beyond context free, and with more descriptive power), and weaker, more 

finegrained, distinguishing more cases from each other.  But of course, the more 

finegrained you make it, the less it is a logic, and the more one wonders whether 

working from the other side (up from combinatory categorial grammar rather than 

down from the logical theories) may not be as attractive and maybe easier to work 

with.   

 

 

 

 

 

 

 


